![]() Locating apparatus, locating method and computer program storage product thereof for a mobile device
专利摘要:
A locating apparatus, a locating method and a computer program storage product thereof for a mobile device are provided. The mobile device has an initial speed. The locating apparatus comprises a sensing unit, a calculation unit and a processing unit. The sensing unit is configured to sense acceleration information and height displacement information. The calculation unit is configured to calculate angle information according to the initial speed, the acceleration information, the height displacement information and a predetermined time interval, is configured to calculate modified acceleration information according to the acceleration information and the angle information, and is configured to calculate composite displacement information according to the initial speed, the modified acceleration information and the predetermined time interval, so that the processing unit is able to generate more accurate location information according to the composite displacement information and the height displacement information. 公开号:NL2005198A 申请号:NL2005198 申请日:2010-08-06 公开日:2011-05-25 发明作者:Wei-Wen Kao;Chih-Horng Li;Augustine Tsai 申请人:Inst Information Industry; IPC主号:
专利说明:
LOCATING APPARATUS , LOCATING METHOD AND COMPUTER PROGRAM STORAGE PRODUCT THEREOF FOR A MOBILE DEVICE PRIORITY This application claims the benefit from the priority to Taiwan Patent Application No. 098139889 filed on November 24, 2009, the disclosure of which are incorporated by reference herein in their entirety. FIELD The present invention relates to a locating apparatus, a locating method and a computer program storage product thereof for a mobile device. More particularly, the present invention relates to a locating apparatus, a locating method and a computer program storage product thereof capable of acquiring location information of a mobile device without the support of the Global Positioning System (GPS). BACKGROUND The Global Positioning System (GPS) is a medium-range circular-orbit satellite system, it provides accurate locating services for most of areas on the Earth. GPS was originally developed for military purposes. GPS is currently available to civilians and has brought about revolutionary changes in daily life. For example, through signals provided by GPS and an e-map provided by a locating/navigating device, vehicle drivers are able to locate their own positions, to know where they are and to enjoy the navigation function. However, since a vehicle is an object that may move at any time, GPS signals are likely to be attenuated or shielded as the vehicle passing by a building, through a tunnel or to be sheltered by the terrain. If the locating/navigation apparatus disposed on the vehicle fails to receive the GPS signals, it will fail to locate and to provide the current vehicle location, so that the locating/navigation apparatus can not provide the navigation function . To continuously indicate the current vehicle location as driving in an area that the locating/navigation apparatus can not receive GPS signals, a sensing unit for sensing a plurality of parameters has been provided in the prior art to solve such a problem. More specifically, according to the parameters sensed by the sensing unit (e.g., an accelerometer and/or a gyroscope), the locating/navigation apparatus can estimate the current vehicle location by employing a dead reckoning approach from a previous location obtained before failure of the locating/navigation apparatus to receive GPS signals. In this way, the locating/navigation apparatus can keep presenting the current vehicle location even when it fails to receive GPS signals . Unfortunately, the location accuracy of the locating/navigation apparatus may decline because these parameters sensed by the sensing unit are affected by various factors. For example, when the vehicle is driving on an uphill or downhill road, the parameters sensed by the sensing unit are erroneous due to influence of the gravity. Besides, the dead reckoning approach adopted by the locating/navigation apparatus is only able to estimate locations of the vehicle in a plane. However, there are transportation network formed of planar roads and elevated roads in modern cities, employing the dead reckoning approach will cause significant degradation in location accuracy of the locating/navigation apparatus. In view of this, there remains a continuing need to provide locating/navigation apparatus with a more accurate locating method that can inform users of their current location even when GPS signals are not available. SUMMARY An objective of particular embodiments of the present invention is to provide a locating apparatus for a mobile device with an initial speed. The locating apparatus comprises a storage unit, a sensing unit, a calculation unit and a processing unit. The storage unit is configured to store the initial speed as initial speed information. The sensing unit is configured to sense acceleration information and height displacement information. The calculation unit is configured to calculate angle information according to the initial speed information, the acceleration information, the height displacement information and a predetermined time interval, to calculate modified acceleration information according to the acceleration information and the angle information, and to calculate composite displacement information according to the initial speed information, the modified acceleration information and the predetermined time interval. The processing unit is configured to generate location information according to the composite displacement information and the height displacement information . Another objective of particular embodiments of the present invention is to provide a locating method for a mobile device with initial speed. The locating method comprises the steps of: enabling a storage unit to store the initial speed as initial speed information; enabling a sensing unit to sense acceleration information and height displacement information; enabling a calculation unit to calculate angle information according to the initial speed information, the acceleration information, the height displacement information and a predetermined time interval; enabling the calculation unit to calculate modified acceleration information according to the acceleration information and the angle information; enabling the calculation unit to calculate composite displacement information according to the initial speed information, the modified acceleration information and the predetermined time interval; and enabling a processing unit to generate location information according to the composite displacement information and the height displacement information. To accomplish the aforesaid objectives, certain embodiments of the present invention further provide a computer program storage product comprising a tangible machine-readable medium which has executable codes to perform the aforesaid locating method for a mobile device. When the executable codes are loaded into the locating apparatus via a computer and executed, the aforesaid locating method can be accomplished. The locating apparatus, the locating method and the computer program storage product thereof according to the present invention can calculate angle information according to the initial speed information, the acceleration information and the height displacement information sensed by the sensing unit as well as the predetermined time interval, and modifies the acceleration information according to the angle information. Thereby, the present invention can not only locate an object in a three-dimensional (3D) environment even when no GPS signal is received, but also improve the locating accuracy. The detailed technology and preferred embodiments implemented for the subject invention are described in the following paragraphs accompanying the appended drawings for people skilled in this field to well appreciate the features of the claimed invention. It is understood that the features mentioned hereinbefore and those to be commented on hereinafter may be used not only in the specified combinations, but also in other combinations or in isolation, without departing from the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIGs. 1A-1D are schematic diagrams illustrating a first embodiment of the present invention; and FIGs. 2A-2B are flowcharts of a second embodiment of the present invention. While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular example embodiments described. On the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims. DETAILED DESCRIPTION In the following description, the present invention will be explained with reference to embodiments thereof. The present invention relates to a locating apparatus, a locating method and a computer program storage product thereof. The locating apparatus may be an apparatus capable of receiving GPS signals, such as a smart mobile phone, a personal digital assistant (PDA) or a netbook. The mobile device may be a device that is movable, such as a vehicle, a ship or an aircraft. However, description of these embodiments is only for purpose of illustration rather than to limit the present invention. It should be appreciated that, in the following embodiments and the attached drawings, elements unrelated to the present invention are omitted from depiction; and dimensional relationships among individual elements in the attached drawings are illustrated only for ease of understanding, but not to limit the actual scale. Hereinafter, a locating apparatus 11 for a mobile device 10 of a first embodiment in accordance with the present invention will be described with reference to schematic views depicted in FIGs. IA to ID. The locating apparatus 11 is configured to calculate location information of the mobile device 10 at a location k, and the locating apparatus 11 is disposed in the mobile device 10. Specifically, FIGs. 1A-1C are schematic diagrams showing the mobile device 10 moving from a location k-1 to the location k within a predetermined time interval (not shown) . The location k-1 has a 3D coordinate of {xk_x, , zH), and the 3D coordinate of the location k is (xk, yk , zk) . In FIG. 1A, 6k represents an angle, wherein the angle is formed by the mobile device 10 moving from the coordinate {zk_x) to the coordinate (zk) along the Z direction within the predetermined time interval, g represents the gravitational acceleration, represents a component of the gravitational acceleration, ^represents an acceleration of the mobile device 10 moving from the location k-1 to the location k, ASkrepresents a composite displacement of the mobile device 10 moving from the location k-1 to the location k, and ADk and AHk represent a horizontal displacement and a height displacement of the mobile device 10 moving from the location k-1 to the location k respectively. The mobile device 10 has an initial speed (not shown) at the location k-1. In FIG. IB, ak represents a cornering angle of the mobile device 10 when cornering (from the X direction to the Y direction) from the coordinates {xk_iryk_x) to the coordinates (xk,yk) within the predetermined time interval. FIG. 1C is a schematic 3D coordinate diagram showing the movement of the mobile device 10 from the location k-1 to the location k. As shown in FIG. ID, the locating apparatus 11 of the first example embodiment of the present invention comprises a sensing unit 11a, a storage unit lib, a calculation unit 11c and a processing unit lid. The sensing unit 11a further comprises an accelerometer 111, a gyroscope 112, an altimeter 113 and a low-pass filter (LPF) 114. The storage unit lib is configured to store map information 126. In this embodiment, when the mobile device 10 is located at the location k-1, an initial speed and the 3D location coordinate ( xk_x, yk_x , zt l) are still calculated according to GPS signals, and are stored in real time by the storage unit lib as initial speed information 127 and initial location information 128. When the mobile device 10 moves to the location k, the accelerometer 111 senses an acceleration of the mobile device 10 to generate acceleration information 123. The gyroscope 112 is configured to sense a cornering angular speed of the mobile device 10 to generate cornering angular speed information 124. The altimeter 113 is configured to sense a height displacement of the mobile device 10 to generate height displacement information 125. It should be noted that the altimeter 113 described in this embodiment senses the height displacement of the mobile device 10 according to variations in the atmospheric pressure and generates the height displacement information 125. In case the atmospheric pressure varies abruptly within a short time, accuracy of the height displacement information 125 will degrade . Therefore, in order to improve accuracy of the height displacement information 125 generated by the altimeter 113, the LPF 114 processes the height displacement information 125 to generate modified height displacement information 125'. It should be appreciated herein that, the present invention is not limited to improving accuracy of the height displacement information 125 by the LPF 114; the accuracy of the height displacement information 125 may also be improved in other manners by those of ordinary skill in the art depending on practical needs, and this will not be further described herein. Also, the present invention is not limited to sense the acceleration, the cornering angular speed and the height displacement of the mobile device 10 by the accelerometer 111, the gyroscope 112 and the altimeter 113 respectively; those of ordinary skill in the art may use other measuring instrument to sense the acceleration, the cornering angular speed and the height displacement depending on practical needs, and this will not be further described herein. Thereafter, the calculation unit 11c calculates temporary displacement information according to the initial speed information 127, the acceleration information 123 and the aforesaid predetermined time interval through Equation (1): (1) Vk_l represents the initial speed information 127 (i.e., the initial speed of the mobile device 10 at the location k-1), AT represents the predetermined time interval, Axk represents the acceleration information 123 (i.e., the acceleration of the mobile device 10 moving from the location k-1 to the location k) , and represents the temporary displacement information. After calculating and generating the temporary displacement information according to the initial speed information 127, the acceleration information 123 and the aforesaid predetermined time interval, the calculation unit 11c calculates angle information according to Equation (2): (2) represents the temporary displacement information, represents the height displacement information 125' (i.e., the height displacement of the mobile device 10 moving from the location k-1 to the location k), and 0k represents the angle information (i.e., the angle formed by the mobile device 10 moving from the coordinate (zkA) to the coordinate (zk) along the Z direction within the predetermined time interval). Then, according to the acceleration information 123 and the angle information, the calculation unit 11c calculates modified acceleration information through Equation (3): (3) Axk represents the acceleration information 123 (i.e., the acceleration of the mobile device 10 moving from the location k-1 to the location k), g represents the gravitational acceleration, 6k represents the angle information (i.e., the angle formed by the mobile device 10 moving from the coordinate (zkl) to the coordinate (zk) along the Z direction within the predetermined time interval), and axk represents the modified acceleration information. Similarly, according to the cornering angular speed information 124 and the angle information, the calculation unit 11c calculates modified cornering angular speed information through Equation (4): (4) cok represents the cornering angular speed information 124 (i.e., the cornering angular speed of the mobile device 10 sensed by the gyroscope 112), 6k represents the angle information (i.e., the angle formed by the mobile device 10 moving from the coordinate (zkl) to the coordinate (zk) along the Z direction within the predetermined time interval) , and co represents the modified cornering angular speed information. Next, according to the initial speed information 127, the modified acceleration information calculated through Equation (3) and the predetermined time interval, the calculation unit 11c calculates composite displacement information through Equation (5): (5) Vk_l represents the initial speed information 127 (i.e., the initial speed of the mobile device 10 at the location k-1), AT represents the predetermined time interval, axk represents the modified acceleration information, and ASk represents the composite displacement information (i.e., the composite displacement of the mobile device 10 moving from the location k-1 to the location k). According to the angle information and the composite displacement information, the calculation unit 11c calculates horizontal displacement information 129 through Equation (6): (6) ASk represents the composite displacement information (i.e., the composite displacement of the mobile device 10 moving from the location k-1 to the location k) , 6k represents the angle information (i.e., the angle formed by the mobile device 10 moving from the coordinate (zk_l) to the coordinate (zk ) along the Z direction within the predetermined time interval), and ADk represents the horizontal displacement information 129 (i.e., the horizontal displacement of the mobile device 10 moving from the location k-1 to the location k). Furthermore, according to the modified cornering angular speed information and the predetermined time interval, the calculation unit 11c calculates cornering angle information 130 through Equation (7): (7) ω represents the modified cornering angular speed information, AT represents the predetermined time interval, and ak represents the cornering angle information 130. The processing unit lid receives the height displacement information 125, the map information 126, the initial location information 128 (i.e. the 3D location coordinate (xk_ir yk_ir zk l) of the mobile device 10 at the location k-1), the horizontal displacement information 129 and the cornering angle information 130. Then according to the initial location information 128, the horizontal displacement information 129 and the cornering angle information 130, the processing unit lid calculates two-dimensional (2D) coordinate information through Equation (8) : (8) (xk_l, yk_x ) represents the 2D location coordinate of the mobile device 10 at the location k-1, ADk represents the horizontal displacement information 129 (i.e., the horizontal displacement of the mobile device 10 moving from the location k-1 to the location k) , ak represents the cornering angle information 130, and (xk,yk) represents the 2D location coordinate of the mobile device 10 at the location k. Next, the processing unit lid generates the location information (not shown) according to the 2D coordinate information and the height displacement information 125', and labels a horizontal location and an altitude location (i.e., the 3D location coordinate (xk , yk , zk )) of the mobile device 10 at the location k in the map information 126 according to the location information . FIGs. 2A-2B show a second embodiment of the present invention, which is a locating method for a mobile device, e.g., the mobile device 10 described in the first embodiment. The locating method of the present invention may be used in a locating apparatus, e.g., the locating apparatus 11 described in the first embodiment. The mobile device has an initial speed. The locating apparatus comprises a sensing unit, a storage unit, a calculation unit and a processing unit. Map information is stored in the storage unit of the locating apparatus. In particular, the locating method of the second embodiment may be implemented by a computer program storage product comprising a tangible machine-readable medium. When a plurality of executable codes stored in the tangible machine-readable medium are loaded into the locating apparatus via a computer, the executable codes are executed to accomplish the locating method of the present invention. These executable codes may be stored in the tangible machine-readable medium, such as a read only memory (ROM), a flash memory, a floppy disk, a hard disk, a compact disk, a mobile disk, a magnetic tape, a database accessible to networks, or any other storage media with the same function and well known to those skilled in the art. Firstly, step 201 is executed to enable the storage unit to store the initial speed as initial speed information, and the sensing unit senses acceleration information and height displacement information in step 202. Then, the sensing unit further modifies the height displacement information in step 203 . Next, the calculation unit calculates angle information according to the initial speed information, the acceleration information, the predetermined time interval and the height displacement information in step 204. More specifically, the calculation unit calculates temporary displacement information according to the initial speed information, the acceleration information and the predetermined time interval, and then calculates the angle information according to the temporary displacement information and the height displacement information . Afterwards, step 205 is executed to enable the processing unit to determine whether the angle information exceeds a threshold value. If not, it means that the mobile device is driving on a planar road, so it is unnecessary to modify the acceleration information. Then, the calculation unit generates composite displacement information according to the initial speed information, the acceleration information and the predetermined time interval in step 206, the processing unit generates location information according to the composite displacement information and the height displacement information in step 207. Finally, step 208 is executed to enable the processing unit to label a horizontal location and an altitude location in the map information according to the location information . If in step 207, the processing unit determines that the angle information exceeds the threshold value, it means that the mobile device is driving on a non-planar road, the acceleration information must be modified. Then, step 209 is executed to enable the calculation unit to calculate modified acceleration information according to the initial speed information, the acceleration information and the angle information, the calculation unit calculates composite displacement information according to the initial speed information, the modified acceleration information and the predetermined time interval in step 210. Afterwards, step 211 is executed to enable the calculation unit to calculate horizontal displacement information according to the composite displacement information and the angle information, and the processing unit generates the location information according to the horizontal displacement information and the height displacement information in step 212. Finally, step 208 is executed to enable the processing unit to label a horizontal location and an altitude location in the map information according to the location information. In addition to the aforesaid steps, the locating method of the present invention can also execute all the operations and functions set forth in the first embodiment. How the locating method of the present invention executes these operations and functions will be readily appreciated by those of ordinary skill in the art based on the explanation of the first embodiment, and thus will not be further described herein. In summary, the locating apparatus, the locating method and the computer program storage product thereof according to certain embodiments of the present invention can calculate angle information according to the initial speed information, the acceleration information and the height displacement information sensed by the sensing unit as well as the predetermined time interval, and modify the acceleration information according to the angle information. Therefore, locating an object in a 3D environment can be accomplished accurately and timely without the support of GPS signals by the locating apparatus, the locating method and the computer program storage product thereof according to the present invention. The above disclosure is related to the detailed technical contents and inventive features thereof. People skilled in this field may proceed with a variety of modifications and replacements based on the disclosures and suggestions of the invention as described without departing from the characteristics thereof. Nevertheless, although such modifications and replacements are not fully disclosed in the above descriptions, they have substantially been covered in the following claims as appended.
权利要求:
Claims (18) [1] A method for locating a mobile device with an initial speed, the locating method comprising the steps of: having a storage unit store the initial speed as initial speed information; having an observation unit observe information related to acceleration and information related to height displacement; having a calculation unit calculate angular information in accordance with the initial speed information, the acceleration information, the height displacement information, and a predetermined time interval; having the calculation unit calculate adjusted acceleration information in accordance with the acceleration information and the angle information; having the calculation unit calculate composite displacement information according to the initial speed information, the adjusted acceleration information and the determined time interval; and having a processing unit generate information about the location in accordance with the composite displacement information and the height displacement information. [2] The location method of claim 1, further comprising the steps of: having the calculation unit calculate adjusted speed information in accordance with the initial speed information, the adjusted acceleration information, and the determined time interval; and having the processing unit update the initial speed information stored in the storage unit to the adjusted speed information. [3] The location method according to claim 1, wherein the step of calculating the angle information further comprises the following steps: having the calculation unit calculate temporary displacement information in accordance with the initial speed information, the acceleration information and the determined time interval; wherein the angle information is calculated in accordance with the temporary displacement information and the height displacement information. [4] The location method according to claim 1, wherein the step of generating location information further comprises the step of: having the calculation unit calculate horizontal displacement information in accordance with the composite displacement information and the angle information; wherein the location information is generated in accordance with the horizontal displacement information and the height displacement information. [5] The location method of claim 4, further comprising the steps of: having the storage unit deliver map information; and having the processing unit label a horizontal location and a height location in the map information in accordance with the location information. [6] The location method according to claim 1, wherein the step of detecting acceleration information and elevation displacement information further comprises the step of: having a low-pass fliter (LPF) adjust the elevation displacement information. [7] A device for locating a mobile device with an initial speed, the locating device comprising: a storage unit adapted to store the initial speed as initial speed information; an observation unit adapted to observe information about acceleration and information about height displacement; a calculation unit adapted to calculate angle information based on the initial speed information, the acceleration information, the height displacement information and a predetermined time interval, to calculate adjusted acceleration information based on the acceleration information and the angle information, and to calculate composite displacement information based on the initial speed information, the adjusted acceleration information and the determined time interval; and a processing unit arranged to generate location information based on the composite displacement information and the height displacement information. [8] A locating device according to claim 7, wherein the calculating unit is adapted to calculate adjusted speed information based on the initial speed information, the adjusted acceleration information and the determined time interval, and the processing unit is adapted to update the initial speed information stored in the storage unit to the adjusted speed information. [9] The locating device of claim 7, wherein the calculating unit is adapted to calculate temporary displacement information based on the initial velocity information, the acceleration information and the determined time interval, and to calculate the angle information based on the temporary displacement information and the height displacement information. [10] The locating device of claim 7, wherein the calculating unit is adapted to calculate horizontal displacement information based on the composite displacement information and the angle information, and the processing unit is adapted to generate the location information based on the horizontal displacement information. [11] The location device according to claim 10, wherein the storage unit is arranged to store map information, and the processing unit is arranged to label a horizontal location and a height location in the map information based on the location information. [12] The locating device of claim 7, wherein the observation unit further comprises an LPF adapted to adjust the height displacement information. [13] A storage product for a computer program, comprising a tangible, machine-readable medium with executable codes for causing a device to perform a method of locating a mobile device at an initial rate, the executable codes comprising: a code A with which a storage unit can store the initial speed as the initial speed; a code B with which an observation unit can observe information about acceleration and information about height displacement; a code C with which a calculation unit can calculate angle information based on the initial speed information, the acceleration information, the height displacement information and a predetermined time interval; a code D with which the calculation unit can calculate adjusted acceleration information based on the acceleration information and the angle information; a code E with which the calculation unit can calculate composite displacement information on the basis of the initial speed information, the adjusted acceleration information and the determined time interval; and a code F with which a processing unit can generate location information based on the composite displacement information and the height displacement information. [14] The computer program storage product of claim 13, wherein the executable codes further comprise: a code G with which the calculating unit can calculate adjusted speed information based on the initial speed information, the adjusted acceleration information and the determined time interval; and a code H with which the processing unit can update the initial speed information stored in the storage unit to the adjusted speed information. [15] The computer program storage product of claim 13, wherein the code C further comprises: a code C1 with which the calculating unit can calculate temporary displacement information based on the initial speed information, the acceleration information and the determined time interval; and a code C2 with which the calculation unit can calculate the angle information on the basis of the temporary displacement information and the height displacement information. [16] The computer program storage product of claim 13, wherein the code F further comprises: a code F1 with which the calculation unit can calculate horizontal movement information based on the composite movement information and the angle information; and a code F2 with which the processing unit can generate the location information based on the horizontal displacement information and height displacement information. [17] The computer program storage product of claim 16, wherein the program further comprises: a code I with which the storage unit can provide map information; and a code J with which the processing unit can label a horizontal location and a height location in the map information based on the location information. [18] The computer program storage product of claim 13, wherein the code B further comprises: a code B1 with which an LPF can adjust the height displacement information.
类似技术:
公开号 | 公开日 | 专利标题 EP2133662B1|2012-02-01|Methods and system of navigation using terrain features CA2769788C|2019-08-13|Methods of attitude and misalignment estimation for constraint free portable navigation CN103575267B|2017-10-13|The method for making image related to the landform altitude map for navigating US10698100B2|2020-06-30|Method and device for determining the position of a vehicle CN103270543B|2015-05-20|Driving assist device JP2012207919A|2012-10-25|Abnormal value determination device, positioning device, and program JP5589900B2|2014-09-17|Local map generation device, global map generation device, and program JP6060642B2|2017-01-18|Self-position estimation device WO2011063280A2|2011-05-26|Spatial alignment determination for an inertial measurement unit | JP5261842B2|2013-08-14|Moving body position detecting method and moving body position detecting apparatus CN106842271B|2020-05-12|Navigation positioning method and device CN110221328A|2019-09-10|A kind of Combinated navigation method and device JP6656886B2|2020-03-04|Information processing apparatus, control method, program, and storage medium NL2005198C2|2012-10-29|Locating apparatus, locating method and computer program storage product thereof for a mobile device. KR101639152B1|2016-07-12|Method and Device for Estimating position of Vehicle Using Road Slope Parviainen et al.2009|Barometer-aided road grade estimation US20130085664A1|2013-04-04|Apparatus and method for detecting heading change in mobile terminal CN102385060A|2012-03-21|Arrangement and method used for two-dimensional and three-dimensional exact position and directional determination JP2009204385A|2009-09-10|Targeting device, method, and program JP2008032598A|2008-02-14|Altitude detector and one's-own-vehicle location determination device JP4884109B2|2012-02-29|Moving locus calculation method, moving locus calculation device, and map data generation method KR101273258B1|2013-06-11|display method for map using route information of navigation apparatus CN112292578A|2021-01-29|Ground level measuring method, ground level measuring device, ground level estimating device, and ground level calculating data collecting device KR101644263B1|2016-07-29|Method and Device for Estimating position of Vehicle KR102350823B1|2022-01-14|Method and apparatus measuring moving distance using slope compensation
同族专利:
公开号 | 公开日 US8527234B2|2013-09-03| US20110125453A1|2011-05-26| TWI484207B|2015-05-11| NL2005198C2|2012-10-29| TW201118408A|2011-06-01|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 EP1760475A2|2005-09-06|2007-03-07|Sony Corporation|Offset detection of acceleration sensor and navigation system| US20080071475A1|2006-08-31|2008-03-20|Tomohisa Takaoka|Navigation Apparatus and Navigation Processing Method| WO2009132682A1|2008-05-02|2009-11-05|Tom Tom International B.V.|Navigation device & method| US7350787B2|2001-04-03|2008-04-01|Voss Darrell W|Vehicles and methods using center of gravity and mass shift control system| CN1235017C|2002-10-08|2006-01-04|曲声波|Vehicle position detection apparatus and treatment method| TW583411B|2002-11-21|2004-04-11|Nat Huwei Inst Of Technology|Signal sensing and output control method and system of the vehicle GPS/INS positioning system| JP2007101526A|2005-09-06|2007-04-19|Sony Corp|Apparatus, method, and program for detecting speed and position and navigation system| TWI287103B|2005-11-04|2007-09-21|Univ Nat Chiao Tung|Embedded network controlled optical flow image positioning omni-direction motion system| US20070156337A1|2005-12-30|2007-07-05|Mamdouh Yanni|Systems, methods and apparatuses for continuous in-vehicle and pedestrian navigation| JP4964047B2|2007-07-12|2012-06-27|アルパイン株式会社|Position detection apparatus and position detection method| US8131465B2|2007-12-14|2012-03-06|Qualcomm Incorporated|Motion detection for tracking|JP5267618B2|2011-06-24|2013-08-21|ソニー株式会社|Information processing device| JP2013145177A|2012-01-13|2013-07-25|Cellstar Kogyo Kk|Road traffic information reception device| DE102014214965B4|2014-07-30|2017-02-02|Robert Bosch Gmbh|Device and method for generating a slope value|
法律状态:
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 TW098139889A|TWI484207B|2009-11-24|2009-11-24|Locating apparatus, locating method and computer program product thereof for a mobile device| TW98139889|2009-11-24| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|